Exploring the Runtime of an Evolutionary Algorithm for the Multi-Objective Shortest Path Problem

نویسنده

  • Christian Horoba
چکیده

We present a natural vector-valued fitness function f for the multi-objective shortest path problem, which is a fundamental multi-objective combinatorial optimization problem known to be NP-hard. Thereafter, we conduct a rigorous runtime analysis of a simple evolutionary algorithm (EA) optimizing f. Interestingly, this simple general algorithm is a fully polynomial-time randomized approximation scheme (FPRAS) for the problem under consideration, which exemplifies how EAs are able to find good approximate solutions for hard problems. Furthermore, we present lower bounds for the worst-case optimization time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets

A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...

متن کامل

Computing Single Source Shortest Paths using Single-Objective Fitness Functions∗

Runtime analysis of evolutionary algorithms has become an important part in the theoretical analysis of randomized search heuristics. The first combinatorial problem where rigorous runtime results have been achieved is the well-known single source shortest path (SSSP) problem. Scharnow, Tinnefeld andWegener [PPSN 2002, J. Math. Model. Alg. 2004] proposed a multi-objective approach which solves ...

متن کامل

Two optimal algorithms for finding bi-directional shortest path design problem in a block layout

In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...

متن کامل

Power System Stability Improvement via TCSC Controller Employing a Multi-objective Strength Pareto Evolutionary Algorithm Approach

This paper focuses on multi-objective designing of multi-machine Thyristor Controlled Series Compensator (TCSC) using Strength Pareto Evolutionary Algorithm (SPEA). The TCSC parameters designing problem is converted to an optimization problem with the multi-objective function including the desired damping factor and the desired damping ratio of the power system modes, which is solved by a SPEA ...

متن کامل

Presenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty.

Reconfiguration of distribution network feeders is one of the well-known and effective strategies in the distribution network to obtain a new optimal configuration for the distribution feeders by managing the status of switches in the distribution network. This study formulates the multi-objective problem of reconfiguration of a distribution network in the optimal presence of distributed genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolutionary computation

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2010